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CLASSICAL and BAYES-P* SUBSET SELECTION

PROCEDURES

for DOUBLE EXPONENTIAL POPULATIONS*

Shanti S. Gupta and Yuning Liao

Department of Statistics, Purdue University, West Lafayette, Indiana 47907, U.S.A.

Abstract

The exact distribution of the sample mean from a double exponential(Laplace) model is

derived. A classical subset selection procedure based on the sample mean for selecting the

population associated with the largest location parameter of k double exponential(Laplace) dis-

tributions is studied. For the case when a non-informative prior is introduced into the problem,

the relation between the classical Maximum-Type Procedure Rule Rmn and the so-called Bayes-

P* subset selection procedure rule is studied. An improved bound for the guarantee probability

of a correct selection for the classical subset selection rule R'"" that relates the rule R"' to the

selected subset size (notice that the subset selection rule Rma* may select all the populations)

is studied and some improved rules of the type R"'a are provided. - , A i , , "

1 Introduction

Suppose we have k double exponential populations H1, 12,..., IHk, where each I1i is characterized

by the location parameter ei, i - 1,2,..., k. The parameters 01, 82,... , 9j are assumed to be

unknown. Let Xi be the observable random variable from II, with probability density function

f(x;8i,o0) = Iexp{Z O - < X, i < 00, a > 0, (1)

*Research supported in part by the Office of Naval Research Contract N00014-88-K-0170 and NSF Grant DMS- -

8702620 at Purdue University.
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where o, is a common known value for all i = 1, 2, ..- , k, so that without loss of generality, we can

assume that o = 1. The ranked parameters are denoted by O1I1 :- 0[2] ... O[k], and it is assumed

that the correct pairing of the ordered 0[,]'s and the unordered Oi's is unknown.

In this paper, we are mainly interested in the subset selection procedures. First, we assume that

there is no prior information about the parameters. Then we study the case where Oi's are inde-

pendently distributed, and each Oi has a non-informative prior.

2 Distribution of the Sample Mean

In connection with the selection procedures based on the sample means, we first derive the distri-

bution of the sample mean.

Let Xii be a random sample from ith population i = 1,2,.- .,Ik, j = 1,2,.. ,n, i.e.

Xij , f(x19i, 1) = lexp{-Ix - Oil}.

Hence

Uij = Xi, - Oi, f(zlO, 1) = 2ezp{-Izl}. (2)

From the characteristic function of U, = j Ui, we can derive the following lemma

Lemma 2.1(Weida (1935)) Suppose U = = Uji, where Uij has density (2), then the density

function of Ui is given by following formula

12ri(-1 ) n-1 1 d
n - 1

f e
- itu2r (n - 1)! indt--l"(l + it) =-  ()

where u > 0 and

p(u)=p(-u) for u<O. 0

Let a = -it, then (3) becomes

1 dn - I  esu

p(u) (n -1)!ds - 1 { '(1-- s) }-

e-U n Cn,n-J u n j

n (n -1)!.=
n

e-" 1 ! Un- ' ,  (4)

j=l Cn



where

Cn = (n- 1)!,
(n+ j -2)! (5)

Cfll..- =(j- 1)!(n - j)!2j - 1' - 12...,n.

Therefore the density function of X = F,=I Xijn/ is
n

fn(I. - 6i) = e- "Il - eiI Eck-,n-jIz - 0dn - j ,  -00 < x < 00, (6)
j=1

where Cn,n-j = " ,:,,n-j/on, j=1,2,...,n.

To obtain the coefficients {cn, i}, i = 0, 1,2,., n - 1, n = 2,3,.- , it is helpful to rewrite the

formula (5) as
(2n -i-2)! (7)Cn,i = 7n - i - 1)!i!2n- i - "

Note that

=n- , = -(2n - i - 2)(2n - i- 3)(cn8l,i)
2(n- i- 1)

In particular

Cn,- Cn,1, Cn,1 = (2n - 3)cn-1,1.

In Table 1, we have provided the values of {cn} and {cn, i) for n = 2(1)10; i = 1(1)n - 1.

To find the cdf of Xi, let us first find the cdf of Ui. Integrating the density function (4) of Ui, we

have

P(u) = p(t)dt (u>0)

- u i : - eU a!njUn-j, (9)

j=1 C

where {an,n-j} satisfy:

an,n-j= C,,nj + (n - j + l)a,,n-j+l j = 1,2,.., n, an,n = 0. (10)

Again we have

a,n-= 1, an,n-2 = (n - 1)(n + 2)/2.
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Hence the cdf of Ti is given by,

e-nix-Oil 1:,n <. :n- Oi- Oi-

F = e C,, , (11)
1- I --j7 a i -- 9 , otherwise.

In Table 2, we provide the values of {c,} and {a,,,i} for n = 2(1)10; i = 1(1)n - 1.

Example: If we want to obtain the density and the cumulative distribution function of the sample

mean of size n=4 from a double exponential model, checking the column n = 4 from both Table 1

and Table 2, we can easily see that

f 4(lx - Oil) = l.e-41x-Ole1(44fz - il 3 + 6 X 431Z - 0412 + 15 x 421__- il + 15 x 4),

and

F4 (x-Ie) 96 1 (43lx - ei3  + 9 x 42 jz - 6,12 + 33 x 41. - Oil + 48), X < 8i,

1 - g;e-41'(43lx - 943 + 9 x 42 x - Ol2 + 33 x 41x - Oil + 48), otherwise.

To compare the percentage points of the sample mean and the sample median, let

Zn = Y - 0 and Z = X(f) - 0.

Since the cdf of Zn for odd number n is much easier to derive (see Gupta and Leong 1979), we

will only provide the comparison of the percentage points of Z, and Zn for n = 3, 5, - -- , 21(Table

3). The percentage points for the distribution of the sample mean Z, when n = 2,4,...,20 are

provided in a separate table(Table 4).

3 Using the Sample Mean to Select the Largest Location Pa-

rameter

If we assume that no prior information about the parameter 9_ = (01,02,..., Ok) is a railable, then we

usually will use either the classical subset selection approach or the indifference zone formulation in

our ranking and selection problem. In the following, we only study the subset selection approach.

(A) Formulation of the Problem: The the classical Maximum-Type Approach for any location

type problem have been well studied, so we would not give too many details, but simply state some

interesting results without any proof.
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For selecting the population associated with the largest location parameter with a correct selec-

tion(CS) probability at least P*(1/k < P* < 1) from k double exponential populations, where we

have a sample mean Xi of size n from each II, i = 1, 2,.-., k, the Classical Maximum-Type Subset

Selection Rule (R") proposed by Gupta(1956) is defined as follows:

R ': Select Hi, if: T, > max i - d/v i for some d(> 0),-1<j~k

where d(> 0) is the smallest value satisfying:

L F-(u + d/v/7)fn(u)d u 2! P*

The usual condition of P(CSIRn") P* is guaranteed by the following theorem:

Theorem 3.1
inf Pe(CSR t ) = inf Pe(CSI Rma) =f F-(u + d/iA)fn(u)du,

-Oa~ - oo

wherefl D o={_ : el=0 2 =...=k, -oo<B0<oo, i=1,2, .. ,k}.

(B) Table of Necessary Constants For Rm : for given k, n, and some particular values of

P*, the constants d/v'ni = d(k, n, P*) which satisfy

P. = 10 F-(u + d/v/i)fn(u)du,

are given in Table 5.

(C) Asymptotic Results for the Procedure Rm": For large n, we can certainly use the normal

distribution to approximate the infimum of Pf(CSIRn'"). Since

inf PL(CSIR') = inf Pp(CSIR'),pen P-Eno

it suffices to consider the case where k E o, now we have

- N(0, 1),
Oan

where an = 2/n, so the probability of the following event

k max Yj- d/vl'n,
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is, asymptotically, the same as that of

Zk > max Z,-d/V'2,
I<j<k

where Zj, j = 1,2,.. k are i.i.d. standard normal variables, thus

inf Pf.(CSIR m' )  1 Pe(Zk > max Zj - d/v/2)
£E - - <j~k

= L0 @k-,(u + d/v/i)dt(u). (12)

On the other hand, if we use the sample median in the selection procedure, we will have, asymp-

totically,

inf P(CSfR~medn) ia P(Zk max Zi - dedijn)!ZE - <j<k

- .k-1(U + dmedi..)dtI(u).

Thus, in order to have the same probability of a correct selection for both selection rules based on

the different statistics, we must have, for large n,

d t- vfidmedian. (13)

(D) Sensitivity of the Assumption of Double Exponential: Suppose we have k populations

I1, 112,..., II, where Hi is characterized by a location parameter 9i. If we do not know whether

these k populations have normal, logistic, or double exponential distributions, then selecting the

population associated with the largest location parameter becomes a problem, because the real

distribution of the populations is unknown. We will show that the double exponential distribution

model provides a safeguard as explained below.

If the sample size n is large, we know that the infimum of Pe(CSJR') for the double exponential

populations is approximately given by (12). On the other hand, for the normal means problem, we

have

inf P(CSIR') = 0*k-i(u + dN)d4(u),

because

Zk > max Z,- dN/Vs/ =-
-<j<k

0 6) max %/'(Z - o) - dN,
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and VW (-vZ - 0) , N(O, 1). Similarly, for the logistic distribution model, we have

inf Pe(CSIR ) t L k-l(U + dL)d'1(u),

therefore,

d = VdN /2dL.

It is clear from the above that the d-values for the double exponential provide conservative bounds

for the other two models, if n is large.

When n is small, for instance, for n = 10, k = 10, we have the following:

P*-value

0.75 0.90 0.95 0.99

d 3.1971 4.2510 4.9063 6.1968

dL 2.2639 2.9925 3.4390 4.3029

dN 2.2637 2.9829 3.4182 4.2456

dN-value excerpted from Bechhofer(1954)

dL-value excerpted from Han(1987 Ph.D. Thesis)

From this we again see that the d-values for the double exponential provide conservative bounds

for the normal and logistic models for the problem of selecting the unknown location parameter.

4 Selection Using a Non-informative Prior

In the Classical Maximum-Type Subset Selection Procedure, it is easy to notice that the selected

subset size IsI is a random variable which is not fixed in advance.

In general, for any location or scale parameter situation, Gupta(1965) proved that:

(1) The procedure of the above type is monotone, and

(2) If the distribution F(x, 8) possesses a density f(z, 0) having a monotone likelihood ratio (MLR)

in x, then E(Isl) is maximized when 01 = 82 = ... = Ok and the maximum is kP.

So, in the worst case, the expected proportion in the selected subset is equal to P*. Furthermore,

it may select populations such that, depending on the unknown parameter P, we may get an actual

P(CS) much larger than P*.
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In this section, we will regard the likelihood function of 9i as the distribution of 0i given X. It is

the same as saying that based on the distribution of a statistic (in our case it is the sample mean

and the sample median), we assume that, independently, each Oi has a non-informative prior,

i = 1,2,...,k.

4.1 Bayes Selection Procedure

In the following, we will consider a more general case, we assume

xi ~ f(Iz - Oil),

i.e. the density of Xi given 19i = 9, is symmetric about 0i(for the case where f(.) is not symmetrical,

we have obtained some results which will be available later), and

0i ~IIH(e)= l1, i = 1,2,.-,.-,k.

Now, we will make decisions based on the posterior distributions of .JX.

From a Bayes perspective, in order to select the population associated with the largest parameter

0[k] with a guaranteed posterior probability of a rorrect selection to be at least P*(1/k < P* < 1)

(the so-called PP*-condition, see Gupta and Yang(1985)), we should consider the following events

Ai = {i is the largest JX = a), i = 1, 2,..., k.

Now, using the non-informative prior, we have

dX- ' f(Izi - ~Il), i = 1,2,-.-,k.

Let pi(.) be the probability of event Ai, then

pi(, = P(Oi is the largest 11)

= P(Oi>9,Vj, i#i1)
= P(Oj - zi > oi - Xi - (x, - zi), Vi, j 96 i It)

- Jo II F(u + (x, - z 1 ))f(u)du,

where F(.) is the cdf of f(.).
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Lemma 4.1: (1) The posterior probability pj(a,) depends only on the differences z - xi, i,j =

1, 2,... , k, j 54 i,

(2) pi(j) is non-increasing in xi, j 54 i, keeping other components of . fixed and it is non-

decreasing in xi, keeping other components of x fixed.

(3) pi(x_) 2: pi(.) if and only if zi > xj.

Proof: The proof is straightforward and hence omitted. 3

Theorem 4.1: For any subset S of the whole populations 111, II2,..., Ilk, let PP(CSS,X.) denote

the posterior probability of a correct selection for the subset S(i.e. the subset S contains the best

population) based on a random sample &_, then

(1) PP(CS IS, ;) is non-increasing in zj, if j 0 S, keeping other components of a fixed, and

(2) PP(CSI S, z) is non-decreasing in xi, if i E S, keeping other components of x fixed.

Proof: Since

PP(CSS,z_) = -pi(.)
iES

= 1-Ep,(c.). (14)

i€s

Now, p,((t) is non-increasing in zj, if j 0 S for all i E S, so PP(CSIS, t) is non-increasing in

z, j 0 S by first part of equation (14).

On the other hand, the second part of equation (14) and the fact that pi( ) is non-increasing in

xi, if i E S for all j 0 S imply that PP(CSIS, j) is non-decreasing in zi, i E S. 3

From the Bayesian analysis, we know that the Bayes Decision Rule (RB) will select the t populations

which associated with the t largest values of pi( r) values (i.e. the Bayes set aB = {11k],.. •, II[k-t+l]}

), where the integer t(_ 1) satisfies

k
E pll :p-,

tu=k-t+1

and

k
E< P,

m=k-t+2

where p[1](.) !5 P[2](j.) ... Pk](z.) are the ordered values of pi(.)'s, and sB is the subset selected

by the Bayes selection rule RB.
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4.2 A Lower Bound on the PP(CS) for the Subset Selection Rule R m

Under the Maximum-Type Subset Selection Rule Rm " defined in the previous section, we know

that the larger the value zi is, the larger the chance that the corresponding population Ili will be

selected.

Under the rule Rm x, we will pick the population Ii if its zi value is larger than x[k] - d, and reject

Hi if Xi < X[k] - d. Thus the following observations:

Observations: For the Maximum-Type Subset Selection Rule Rm', we know at least the following

two facts

(1) Rnax will always pick population H[k], i.e. the population associated with the largest value

X~k],

(2) All Hi not being selected by R" must has its zi value less than z[k] - d.

Theorem 4.2: If the subset selection rule Rs" selects i populations(i.e. select population

H[k],. •., 11[k-i+l], where 11[1 is the population associated with the jth largest value z[11), under the

classical selection procedure, then

PP(CSIRma,& 2! PP(CSIRm, aE Xo)

= P"+ P...1(.P-), (15)

where X o = {f : Z[k] - d = x[k-1] = )Z1] }.

Remark 4.2: A similar result for the normal model has been given in Gupta and Yang (1985).

Here, we will give a probabilistic proof of the above theorem.

Proof: The first part of the inequality [i.e. PP(CSIRm", a) _ PP(CSIRm', E Xo)] follows

from the above observations and Theorem 4.1.

When a E Xo, we know that prk](ur) > p[k-1](a) = -p ai](a), and

P(k](A) - f fi F(u + (zx[A - zx.]))f(u)du
00 j#1

= II F(u + d)f(u)du

= 00 Fk-(u + d)f(u)du= P,

since Epi(a) = 1, so pI()= P[21() = " = p= -i - P*) and JsRmxJ = i, hence the

result follows. 3
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Since PP(CSIR' ,) >_ P* and it is strictly larger than P*, once we pick more than one popu-

lation, we certainly can find a better subset selection rule by simply utilizing the lower bound on

PP(CSIRmx.).

4.3 Some New Selection Procedures

First, let us consider the following selection procedure:

Let Ax[ = x[k] - x[k-, for i = 1, 2,---, k - 1, where x] [2] :_ ..x 1 zpkj are the ordered values

of xi's. then, we compute the following k - 1 numbers:

f =+00 Fk-l(u + Ax[,jgdF(u ).  (16)
+00

Since 0 _ Ax[ 1] _5 ... _5 Ax[k_1 ], therefore

0 < P(I) < 2) <'" < k-1 ).

Next, we compute:

PI) + - (I - Pt)). (17)

Lemma 4.2: For values of AZ[,I, where 0 : Azj _: ... _ Az[-1j, we have

0 _< Q " --5 Q'k-1)(< 1). (18)

Proof: Actually, we have

k-iq0 k - 1 ( )

so %) is increasing in i, because k - i is decreasing in i and 1 - P ') is decreasing in AxN (thus in

i); hence the result. 0

Now, we propose the following subset selection rule RI:

For any preassigned guarantee probability P*(1/k < P* < 1), if there exists the smallest

which satisfies Q~jo) - P*', then the subset selection rule R, is

RI : Select f1(i) iff: j > io. (19)

The subset selection rule R, will take a = {H(k),. , II(k-io+)) as our selected subset.
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otherwise, R, will select all populations.

Remark 4.3: To implement the procedure RI, we examine the posterior probabilities at following

k - 1 stages:

Stage 1. pull all k - 2 values of z[, i = 1,2,.-., k - 2 to the point X[k-1], and check if

k-i
k -T- 1 - if1)) < 1- P',

if the above holds, we select s = {II(k]} and terminate the process, if not, we go to

Stage 2. pull all k - 2 values of x[,I, i k- 2, i = 1, 2,..., k - 1 to the point X[k-2], check if

k-2k (1 Pi2) -1 P*'

if it holds, we select a = {1k], II[k-1]} and terminate the process, if not, we go to Stage 3, and so

on, until we can find an i such that

km 1- Pi
-Pa')) :5 1 - Ps,

and then we select q = {II1], II[k- 1], -", .-. i+l]}; If there does not exist such an i, we select all

populations.

For other subset selection rules R 2 , .-. , Rk-1, we give the following remark:

Remark 4.4: Note that in the Process of deriving the subset selection rule R 1, we divided the

data into two groups, and put only one value (i.e. xfkl) into the first group. Now we can develop

it in two directions.

(a) By putting more Z[,1's into the first group, we can actually replace Qc?) by Q** as follows:

k-s
Q *. = maxc (- *

O<m<i-1 k - m - 1

where

f +00
= __Fmlt - (X[k-m] -z[k l))dFk-mnl(u), m =0, 1,.. 1,

is the posterior probability of p11](z) = ... = P[k-m-I](-X), when we pull X[k],' " , X[k-n+l] to X[k-m)

and Xtk-ml ,*. •, X.1) to Z[k-,I.

When m = 0, we have

= 1-
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which is the value we used in the rule R1.

(b) We can also divide the data into 3, 4,..., k groups. Let R 2 be the rule for the case of 3

groups, ... , and Rh-I be the rule for the case of k groups. then in the case of k groups, the subset

selection rule and the previous rule RB are identical. Later, it will be shown that R 2 can be as

good as RB and it is easier to implement from the computational viewpoint.

4.4 Properties of Subset Selection Rule

We can easily prove the following:

Proposition 4.1: The subset selection rule R 1 is better than rule Rm ax, in the sense that

(a) PP(CSIR1 ) >_ P*, because PP(CSIRI) Qjo)0 , and

(b) s1 C SR---, because P(0) < P*

Proposition 4.2: (a) The subset selection rule R1 and RB will take the same action, if X[I]

X[k-1] < x[(], or when the subset selection rule R1 selects all populations in its selected subset.

(b) The subset selection rule R 1 , RB and R' will take the same action, if the subset selection

rule R1 selects only one population.

Proposition 4.3: The subset selection rule R, possesses the advantage of the rule Rm ", because

the forms of the involved integration for P(*) and P* are identical.

Remark 4.5: The selection rule R1 is like a modified rule of Rb, where, it like that the population

associated with the largest statistic possesses the probability P* of a correct selection, and the

remaining Isl - 1 populations in s have the P(CS) at laest equal to lj!l(1 - P-).

5 An Example for Comparsion of the Several Subset Selection

Rules

A data set of exponential random numbers generated by a statistical package G6-RVP designed by

H.Rubin and C.Hinkle at Purdue University was given in Gupta and Leong's paper(1979), where

9 observations for each of 5 sets of double exponential random numbers with location parameters

0, equal to 0, 2.5, 3.4, -2.0, -0.65 were taken.

13



H,'[ ]"2 1"[3 ]'14 IIs

-3.4839 -0.9839 -0.0839 -5.4839 -4.1339

-2.6762 -0.1762 0.7238 -4.6762 -3.3262

-0.3129 2.1871 3.0871 -2.3129 -0.9629

-0.2264 2.2736 3.1736 -2.2264 -0.8764

-0.1761 2.3239 3.2239 -2.1761 -0.8261

0.1462 2.6462 3.5462 -1.8538 -0.5038

0.3033 2.8033 3.7033 -1.6967 -0.3467

1.6160 4.1160 5.0160 -0.3840 0.9660

5.6924 8.1924 9.0924 3.6924 5.0424

To see how each subset selection rule performs, let

xi = the sample mean of Ili and yi = sample median of Hi,

then

(x 1..., x,)' = (0.0980, 2.5980, 3.4980, -1.9020, -0.5520)',

= (yi,.. ., ys)' = (-0.1761,2.3239,3.2239, -2.1761, -0.8261)'.

Hence the difference of xi's and yi's are Ax 3 2 = Ay32 = 0.90, Ax 31 = Ay31 = 3.40,

Ax3s = Ay3s = 4.05, Ax34 = Ay 34 = 5.40.

(a) Now, we have the following:

PP(CSIR,4 f or R = RB, R 1,Ri(i > 2)

when one population is picked

using mean using median

RB or Ri(i > 2) 0.9131 0.9380

Rm l or R 1  0.7700 0.8292

where, in the case of the sample mean, the integration for RB is

P J F9(u + 0.9) x Fg(u + 3.4) x Fg(u + 4.05) x Fg(u + 5.4)dF9 (u).

The integration for R 2 is

P= Fq(u + 0.9) x F3(u + 3.4)dF9(u).

14



Also, the integration for R, or RI is

P = f F4(u + 0.9)dFg(u),

where Fg(.) is the cdf of the sample mean of size 9.

The same applies to the case of the sample median. Note that the rule R 2 is as good as RB.

(b) In the case where two populations are taken, we have the probability one for all selection rules,

because

J ,, F(u + 3.4)dF(u) , G4(u + 3.4)dG4(u) = 1,j-.ooJ .- 00

where G 4 (.) is the cdf of the sample median of size 9(see Gupta and Leong (1979)).
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Table 1: Table of {c,} and {cn,i} for n = 2,3,..-,10

sample size n

cn~~i 2 8 1 5 6J 10 J
cn 4 16 96 768 7680 92160 1290240 20643840 371589120

.cn,o 1 3 15 105 945 10395 135135 2027025 34459425

cn,1  1 3 15 105 945 10395 135135 2027025 34459425

Cn,2 1 6 45 420 4725 62370 945945 16216200

Cn,3 1 10 105 1260 17325 270270 4729725

cn,4 1 15 210 3150 51975 945945

Cn,S 1 21 378 6930 135135

cn,6 1 28 630 13860

Cn,7 1 36 990

Cn,8 1 45

cn,91
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Table 2: Table of {c'} and {an,,} for n =2,3,...,10

sample size n

an, 2 3 4 5 6 7 8 9 10

cn 4 16 96 768 7680 92160 1290240 20643840 371589120

an,o 2 8 48 384 3840 46080 645120 10321920 185794560

an,I 1 5 33 279 2895 35685 509985 8294895 151335135

an,2 1 9 87 975 12645 187425 3133935 58437855

an,3 1 14 185 2640 41685 729330 14073885

an,4 1 20 345 6090 114765 2336040

an,5  1 27 588 12558 278019

an,6 1 35 938 23814

a1, 1 44 1422

an,8  1 54

an,9 1
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Table 3: 1) Upper 100(1 - a) Percentage Points & of Z, (Top Entry);

2) A, = f- , where f is the Upper 100(1 - a) Percentage Points of

ZZ(Bottom Entry).

sample size n

1 -a 31517191 11 j13 15 17 19 2

0.750 0.6050 0.6321 0.6440 0.6507 0.6550 0.6580 0.6602 0.6619 0.6632 0.6643

-.0825 -.1102 -.1249 -. 1343 -. 1409 -.1459 -.1499 -.1531 -.1557 -.1579

0.900 1.2221 1.2432 1.2532 1.2590 1.2629 1.2656 1.2670 1.2692 1.2704 1.2715

-.0739 -.1259 -. 1591 -.1823 -.1995 -.2129 -.2237 -.2326 -.2401 -.2467

0.950 1.6372 1.6385 1.6395 1.6402 1.6408 1.6412 1.6416 1.6419 1.6422 1.6424

-.0369 -.1025 -. 1484 -.1815 -.2066 -.2264 -.2426 -.2560 -.2675 -.2774

0.975 2.0284 2.0026 1.9905 1.9836 1.9794 1.9763 1.9740 1.9724 1.9711 1.9699

.0144 -.0632 -.1210 -.1637 -.1967 -.2229 -.2443 -.2623 -.2778 -.2910

0.990 2.5214 2.4524 2.4194 2.3999 2.3871 2.3782 2.3715 2.3663 2.3621 2.3590

.0976 .0055 -.0683 -.1236 -.1666 -.2014 -.2298 -.2539 -.2741 -.2923

0.995 2.8821 2.7759 2.7246 2.6941 2.6746 2.6599 2.6495 2.6410 2.6343 2.6294

.1684 .0659 -.0195 -.0842 -.1355 -.1758 -.2099 -.2387 -.2625 -.2844

Table 4: Upper 100(1- a) Percentage Points fa of Zn for even values of n

sample size n

io __ 2 4 6 8 1 01 12 14 16 18 20

0.750 0.5731 0.6218 0.6390 0.6478 0.6531 0.6566 0.6592 0.6611 0.6626 0.6638

0.900 1.1986 1.2350 1.2489 1.2564 1.2611 1.2643 1.2667 1.2685 1.2698 1.2710

0.950 1.6359 1.6379 1.6390 1.6399 1.6405 1.6411 1.6415 1.6418 1.6420 1.6423

0.975 2.0563 2.0125 1.9955 1.9867 1.9814 1.9777 1.9751 1.9733 1.9717 1.9705

0.990 2.5958 2.4792 2.4335 2.4084 2.3929 2.3822 2.3746 2.3688 2.3642 2.3605

0.995 2.9944 2.8174 2.7466 2.7075 2.6831 2.6666 2.6544 2.6453 2.6379 2.6318
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Table 5: Values of d/./i = d(n, k,P) for n,k = 2,3,-.., 10

numbar of Populations k

n P" 2 3 4 5 6 7 8 9 i0

0.75 1.1462 1.7849 2.1575 2.4258 2.6365 2.8104 2.9584 3.0874 3.2015

1 0.90 2.3972 3.0504 3.4336 3.7083 3.9234 4.1002 4.2503 4.3809 4.4964

0.95 3.2716 3.9322 4.3197 4.5971 4.8138 4.9917 5.1427 5.2739 5.3899

0.99 5.1910 5.8612 6.2549 6.5350 6.7538 6.9333 7.0853 7.2180 7.3343

0.75 0.9580 1.3575 1.6011 1.7756 1.9110 2.0214 2.1144 2.1947 2.2653

2 0.90 1.7893 2.1966 2.4393 2.6118 2.7452 2.8539 2.9454 3.0244 3.0939

0.95 2.3470 2.7550 2.9962 3.1670 3.2992 3.4069 3.4975 3.5758 3.6447

0.99 3.5237 3.9287 4.1660 4.3337 4.4634 4.5696 4.6582 4.7351 4.8032

0.75 0.7379 1.1187 1.3251 1.4666 1.5740 1.6605 1.7328 1.7949 1.8493

3 0.90 1.4421 1.7960 1.9924 2.1281 2.2316 2.3152 2.3853 2.4455 2.4983

0.95 1.8926 2.2339 2.4250 2.5576 2.6591 2.7410 2.8098 2.8690 2.9209

0.99 2.8096 3.1318 3.3142 3.4417 3.5394 3.6189 3.6855 3.7427 3.7932

0.75 0.6478 0.9796 1.1575 1.2784 1.3696 1.4428 1.5037 1.5558 1.6013

4 0.90 1.2564 1.5601 1.7268 1.8414 1.9283 1.9983 2.0567 2.1068 2.1507

0.95 1.6399 1.9298 2.0909 2.2020 2.2866 2.3548 2.4119 2.4608 2.5038

0.99 2.4086 2.6774 2.8290 2.9344 3.0150 3.0802 3.1351 3.1820 3.2234

0.75 0.5842 0.8821 1.0407 1.1480 1.2286 1.2931 1.3466 1.3923 1.4322

5 0.90 1.1280 1.3980 1.5454 1.6462 1.7224 1.7836 1.8346 1.8783 1.9165

0.95 1.4673 1.7236 1.8650 1.9623 2.0362 2.0956 2.1452 2.1877 2.2249

0.99 2.1401 2.3752 2.5071 2.5983 2.6682 2.7246 2.7719 2.8121 2.8477
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Table 5 (continued)

0.75 0.5361 0.8088 0.9532 1.0507 1.1237 1.1819 1.2301 1.2713 1.3072

6 0.90 1.0320 1.2777 1.4110 1.5022 1.5707 1.6256 1.6714 1.7106 1.7450

0.95 1.3396 1.5718 1.6992 1.7864 1.8530 1.9058 1.9504 1.9885 2.0215

0.99 1.9453 2.1533 2.2734 2.3555 2.4170 2.4668 2.5078 2.5430 2.5752

0.75 0.4983 0.7514 0.8850 0.9748 1.0420 1.0955 1.1397 1.1775 1.2103

7 0.90 0.9575 1.1843 1.3071 1.3906 1.4535 1.5038 1.5457 1.5814 1.6126

0.95 1.2408 1.4542 1.5713 1.6513 1.7119 1.7605 1.8010 1.8356 1.8658

0.99 1.7952 1.9874 2.0951 2.1694 2.2258 2.2714 2.3095 2.3423 2.3708

0.75 0.4675 0.7045 0.8295 0.9132 0.9758 1.0255 1.0666 1.1017 1.1321

8 0.90 0.8969 1.1086 1.2230 1.3006 1.3590 1.4057 1.4444 1.4775 1.5064

0.95 1.1609 1.3596 1.4683 1.5426 1.5987 1.6436 1.6810 1.7130 1.7410

0.99 1.6750 1.8530 1.9526 2.0211 2.0731 2.1152 2.1504 2.1804 2.2068

0.75 0.4419 0.6658 0.7835 0.8623 0.9210 0.9677 1.0063 1.0391 1.0676

9 0.90 0.8468 1.0461 1.1535 1.2263 1.2811 1.3248 1.3610 1.3920 1.4189

0.95 1.0950 1.2816 1.3835 1.4530 1.5055 1.5475 1.5825 1.6123 1.6384

0.99 1.5764 1.7430 1.8358 1.8997 1.9482 1.9874 2.0200 2.0480 2.0726

0.75 0.0015 0.5712 0.7179 0.8051 0.8665 0.9135 0.9516 0.9835 1.0110

10 0.90 0.7512 0.9761 1.0869 1.1593 1.2126 1.2547 1.2893 1.3188 1.3443

0.95 1.0141 1.2070 1.3078 1.3752 1.4255 1.4655 1.4986 1.5269 1.5515

0.99 1.4865 1.6476 1.7362 1.7968 1.8428 1.8796 1.9103 1.9365 1.9596
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